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Reparameterised Gradients

Gradients of the evidence lowerbound

ELBO

E(λ, θ) = EqZ |X (z|x ,λ)

[
log

pZX (z , x |θ)

qZ |X (z |x , λ)

]
Updating generative model

∇θE(λ, θ) = EqZ |X (z|x ,λ)

[
∇θ log

pZX (z , x |θ)

qZ |X (z |x , λ)

]
Updating inference model

∇λE(λ, θ) = ∇λEfZ (z|λ) [ψ(z)]
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fZ (z |λ) = qZ |X (z |x , λ) and ψ(z) = log pZX (z,x|θ)
qZ|X (z|x,λ)



Reparameterised Gradients

Score function estimator

∂

∂λ
EfZ |λ(z) [ψ(z)] = EfZ |λ(z)

[
ψ(z)

∂

∂λ
log fZ |λ(z)

]
Easy to MC estimate, but noisy.
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Reparameterised Gradients

Reparameterised gradient

∂

∂λ
EfZ |λ(z) [ψ(z)] = Es(ε)

[
∂

∂λ
ψ(t(ε, λ))

]
= Es(ε)

[
∂

∂z
ψ(z)

∂

∂λ
t(ε, λ)

]
Easy to MC estimate.
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Reparameterisation

• t(ε, λ) is invertible and differentiable

• z = t(ε, λ) has density fZ (z |λ)

• ε = t−1(z , λ) has density s(ε)

Change of density

fZ |λ(z) = s(t−1(z , λ)︸ ︷︷ ︸
ε

)|det Jt−1 (z , λ)|

As a result

EfZ (z|λ)[ψ(z)] =

∫
fZ (z |λ)ψ(z)dz

=

∫
s(t−1(z , λ))|det Jt−1 (z , λ)|ψ(z)dz

=

∫
s(ε)|det Jt(ε, λ)|−1

ψ(t(ε, λ))|det Jt(ε, λ)|dε

=

∫
s(ε)ψ(t(ε, λ))dε



Reparameterised Gradients

Gradient Estimators

Basic problem: we want to differentiate an expected value wrt λ

∂

∂λ
EfZ |λ [ψ(z)] e.g., ψ(z) := log p(x |z , θ)

fZ |λ(z) := q(z |x , λ)

but the distribution of Z depends on λ.

We have met the SFE and the reparameterised gradient estimator:

Efλ(z)

ψ(z)
∂

∂λ
log fZ |λ(z)︸ ︷︷ ︸
ĝsfe

 = Es(ε)

 ∂

∂z
ψ(z)

∂

∂λ
t(ε, λ)︸ ︷︷ ︸

ĝrep


ĝsfe is typically cursed with variance
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From VAEs, you know the reparameterised gradient estimator

∂

∂λ
EfZ|λ(z) [ψ(z)] = Es(ε)

[
∂

∂λ
ψ(t(ε, λ))

]
= Es(ε)

[
∂

∂z
ψ(z)

∂

∂λ
t(ε, λ)

]
it takes an invertible and differentiable transformation t such that

t(ε, λ) ∼ fZ |λ

t−1(z , λ) ∼ s(ε)

Goals Understand why there can’t be a ĝrep for discrete rvs. Meet alter-
natives to SFE.



Reparameterised Gradients

A general reparameterisation

For univariate Z , what transformation will always absorb the parameters of
the density fZ |λ(z)?

FZ |λ(z)︸ ︷︷ ︸
cdf

∼ U( 0, 1︸︷︷︸
fixed

)

So, if I know the inverse cdf,

ε ∼ U(0, 1)

F−1
Z |λ(ε) ∼ Z |λ

I have access to ĝrep.
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The argument extends to a vector of independent univariate rvs.
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Reparameterised Gradients

Let’s reparameterise a Bernoulli

Z ∼ Bernoulli(p)

F−1
Z |p(ε) =

{
1 if ε < p

0 otherwise

= 1(0,p)(ε)

How about ∂
∂pF

−1
Z |p(ε)? Mostly 0, sometimes undefined!
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Reparameterised Gradients

Discrete case

Discrete variables do not admit a differentiable reparameterisation. The
derivatives of the inverse cdf are either 0 or undefined :/

The score function estimator is fully general, but very noisy.

How about we fake a Jacobian and call it a pseudo-gradient?

Jt(ε, λ) = diag(1)

This is the ingredient behind the straight-through estimator (STE).

Deep Learning 2 @ UvA Advanced discrete LVMs 7 / 36

STE’s original paper (Bengio et al., 2013).

There are other pseudo-gradients in the literature, for example for re-
laxed combinatorial random variables (Peng et al., 2018; Mihaylova et al.,
2021).
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Reparameterised Gradients

Bernoulli-STE

Consider a VAE where q(z |x) = Bern(z |g(x ;λ)).

We sample z via a reparameterisation that absorbs λ:

ε ∼ U(0, 1) p = g(x ;λ) z = 1(0,p)(ε)︸ ︷︷ ︸
t(ε,λ)

Optimising the ELBO via reparameterised samples requires

ĝrep =
∂

∂λ
log p(x |z = t(ε, λ)) =

∂

∂z
log p(x |z)

∂

∂λ
t(ε, λ)

Let’s use our pseudo gradient

ĝste :=
∂

∂λ
t(ε, λ) =

∂

∂λ
g(x ;λ)

��
��

��*
:= 1

∂

∂p
1(0,p)(ε)
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Reparameterised Gradients

Concrete Distribution

We can sample from a Categorical distribution via

εk ∼ Gumbel(0, 1)

arg max
k

{λk + εk}Kk=1︸ ︷︷ ︸
z=t(ε,λ)

∼ Cat(softmax(λ))

The problem is that t(ε, λ) is not differentiable, but note

softmax

(
λ+ ε

τ

)
→ onehot(z) as τ → 0

and now the transformation is differentiable, but the outcome is dense.

Deep Learning 2 @ UvA Advanced discrete LVMs 9 / 36

Concrete distribution (Maddison et al., 2017), Gumbel-Softmax distribu-
tion (Jang et al., 2017).

STE: use sparse encoding for z

z = onehot

(
λ+ ε

τ

)
but use the Jacobian of dense encoding

z = softmax

(
λ+ ε

τ

)
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Reparameterised Gradients

Mixed Binary Variables

Continuous random variables that take on sparse outcomes with non-zero
probability mass.
Example I:

sample ζ ∼ N (0, 1)

rectify the sample via hardsigmoid z = min(1,max(0, z)).

What is the probability Pr(Z ∈ {0})?

it is Φ(0) =
∫
R<0
N (0, 1)dz
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When ζ < 0 or ζ > 1 the derivative of hardsigmoid is 0, when 0 < ζ < 1
the derivative is 1. Hardsigmoid has undefined derivatives for ζ = 0 and
ζ = 1, but we will never sample those.

If we had a parameterised Gaussian, we could sample with a reparameter-
isation and learn the Gaussian parameters.

This has been applied to generate mixed random variables in the support
[0, 1].

Spike-and-slab (Rolfe, 2017); HardConcrete (Louizos et al., 2018); Hard-
Kumaraswamy (Bastings et al., 2019).

Applications to interpretability (Voita et al., 2019; Cao et al., 2020; Ataman
et al., 2020)
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Reparameterised Gradients

Mixed Binary Variables

Continuous random variables that take on sparse outcomes with non-zero
probability mass.

Construction:

start with a continuous univariate rv ζ with density s(ζ)

project it to [0, 1] using a function that hits the boundaries of the set

the projection function is differentiable everywhere except at ζ = 0
and ζ = 1 which have 0 measure under s(ζ)

The path derivative is defined almost everywhere, a g-rep can be used.
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Reparameterised Gradients

Can we go beyond univariates?

Yes, if we look into sparse projections to the probability simplex.

It turns out the ‘hard sigmoid’ is the a special case of a more general
projection known as sparsemax.
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Sparsemax
sparsemax(ζ) = arg max

ζ∈∆K−1

min ||p − ζ||2

When K = 2, sparsemax is equivalent to hardsigmoid.



Reparameterised Gradients

Mixed Random Variables

Generalisation of mixed binary random variables to the multivariate case.

Intrinsic view:

draw ζ in RK (e.g., from a multivariate Gaussian)

project it to ∆K−1 (e.g., using sparsemax)

What is the probability that we have a point in one of the faces of the
simplex?

In this example, we would have to integrate the multivariate
Gaussian pdf over the set of points in the inverse of sparsemap.

Deep Learning 2 @ UvA Advanced discrete LVMs 13 / 36

The faces of the simplex (e.g., with 3 vertices):
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Reparameterised Gradients

Mixed Random Variables

Generalisation of mixed binary random variables to the multivariate case.

Extrinsic view:

choose a face f of the simplex with probability PF (f )

draw z from the relative interior of f (e.g., using a LogisticNormal
distribution)
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The faces of the simplex (e.g., with 3 vertices):

Farinhas et al. (2022)
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Sparse Gradients

Latent Computation Graphs

Estimators built on reparameterisation require

z to be of some fixed finite dimensionality

the decoder’s computation graph must be independent of z .

Some composition functions are parameterised by their inputs (e.g., a
tree-LSTM), they are dynamic computation graphs controlled by the
discrete latent.

STE is not an option, so we are back to SFE. Or are we?
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ĝrep differentiates the decoder wrt z

ĝrep =
∂

∂z
ψ(z)× ∂

∂λ
t(ε, λ)

This cannot work when the computation graph of ψ depends on z (i.e.,
whenever z cannot be treated as a point in the relative interior of a fixed
and finite-dimensional polytope). For example, a tree-LSTM updates its
states following a depth-first traversal of an input tree.



Sparse Gradients

Parameterise for Tractability

We can use sparse projections to the probability simplex to parameterise
discrete distributions that assign 0 probability mass to most of the
outcomes in their supports.

∇λEq(z|x ,λ)[log p(x , z |θ)− log q(z |x , λ)]

=∇λq(c1|x , λ)(log p(x , c1|θ)− log q(c1|x , λ))

+ . . .

+ ∇λq(ck |x , λ)(log p(x , ck |θ)− log q(ck |x , λ))

+ ∇λ

cK∑
z=ck+1

q(z |x , λ)︸ ︷︷ ︸
=0

(log p(x , z |θ)− log q(z |x , λ))

Effectively, we have an inference network that parameterises a model
whose support is small enough for enumeration.
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Sparse projections: (Martins and Astudillo, 2016; Niculae et al., 2018a)

Latent dynamic computation graphs: (Niculae et al., 2018b)

Sparse marginals: (Correia et al., 2020)
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Variance reduction

Control variates

Intuition

To estimate E[ψ(z)] via Monte Carlo we compute the empirical average of
ψ̂(z) where ψ̂(z) is chosen so that E[ψ̂(z)] = E[ψ(z)] and
Var(ψ) > Var(ψ̂).

Deep Learning 2 @ UvA Advanced discrete LVMs 17 / 36



Variance reduction

Equivalent expectations

Let ψ̄ = E[ψ(z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for ψ̂(z) , ψ(z)− b(c(z)− E[c(z)])
it holds that E[ψ̂(z)] = E[ψ(z)]

and Var(ψ̂) = Var(ψ)− 2b Cov(ψ, c) + b2 Var(c)
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Variance reduction

Choosing the control variate

1 ψ̂(z) , ψ(z)− b(c(z)− E[c(z)])

2 Var(ψ̂) = Var(ψ)− 2b Cov(ψ, c) + b2 Var(c)

How do we choose b and c(z)?

solving ∂
∂b Var(ψ̂) = 0 yields b? = Cov(ψ, c)/Var(c)

when ψ(z) and c(z) are positively correlated, then we may reduce
variance

Of course, E[c(z)] must be known!

Deep Learning 2 @ UvA Advanced discrete LVMs 19 / 36
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Variance reduction

MC

We then use the estimate

ψ̄
MC
≈ 1

S

(
S∑

s=1

ψ(z(s))− bc(z(s))

)
+ bc̄

And recall that for us

ψ(z) = log
pZX (z , x |θ)

qZ |X (z |x , λ)

∂

∂λ
log qZ |X (z |x , λ)

and z(s) ∼ qZ |X (z |x , λ)
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Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]

=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0
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Variance reduction

Baselines

With

ψ(z) = log
p(z , x |θ)

q(z |x , λ)

∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

ψ̂(z) =

(
log

p(z , x |θ)

q(z |x , λ)
− b

)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.
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Variance reduction

Examples of baselines

Moving average of log p(z,x |θ)
q(z|x ,λ)

based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The reward assessed at a deterministic point, e.g.
b(x) = log p(z?,x |θ)

q(z?|x ,λ) where z? = arg maxz q(z |x , λ)

The reward assessed at a stochastic point, e.g.

b(x) = log p(z ′,x |θ)
q(z ′|x ,λ) where z ′ ∼ q(z |x , λ)
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Variance reduction

Trainable baselines

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L2-loss.

min
ω

(
b(x ;ω)− log

p(z , x |θ)

q(z |x , λ)

)2
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Variance reduction

Other techniques

control variates beyond baselines: Tucker et al. (2017), Grathwohl
et al. (2018)

Rao-Blackwell: Liu et al. (2019)
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Variance reduction

Summary

Learning discrete LVMs poses challenges for gradient estimation, in
particular, gradients of the inference network are challenging.

SFE is the most general, it requires tractable pmf and sampling, nothing
else. It is too noisy to be useful without variance reduction techniques.
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Variance reduction

Summary

Alternatives to SFE are possible in some cases.

STE requires a relaxation of the decoder and introduces biases, violating
the requirements for stochastic optimisation.

We can mix a pmf and a pdf to obtain reparameterised and unbiased
gradients for a sparse rv. This addresses STE’s bias.

Sparse parameterisation of the inference model leads to sparse gradients
with many terms evaluating trivially to zero. Enumeration dispenses with
relaxations and works for combinatorial variables.
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Variance reduction

Final Remarks

Probabilistic models are extremely flexible tools.

They are interesting precisely because we can make choices about
unobserved aspects of the data.

Discrete latent variables are oftentimes key to revealing interpretable
structure, or to imposing some interpretable structure on a joint
distribution.

Learning discrete LVMs is challenging, but recent years have seen
amazing progress.

Join the party! Apply these models, extend them, discover problems
with their estimation/evaluation, investigate solutions.

Avoid approaching LVMs wondering whether they will beat some
non-LVM NN. If such NN exists, then you are probably looking at an
aspect of the problem that does not require latent variables.
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Variance reduction

What Next?

For more material, check
https://vitutorial.github.io/classes/

We also have some coding exercises
https://github.com/vitutorial/exercises

Check this great tutorial by our friends from DeepSPIN
https://deep-spin.github.io/tutorial/

See you around!
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Vlad Niculae, André F. T. Martins, and Claire Cardie. Towards Dynamic
Computation Graphs via Sparse Latent Structure. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing,
pages 905–911, Brussels, Belgium, October 2018b. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1108. URL
https://www.aclweb.org/anthology/D18-1108.

Hao Peng, Sam Thomson, and Noah A. Smith. Backpropagating through
structured argmax using a SPIGOT. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1863–1873, Melbourne, Australia, July 2018.
Association for Computational Linguistics. doi: 10.18653/v1/P18-1173.
URL https://www.aclweb.org/anthology/P18-1173.

Jason Tyler Rolfe. Discrete variational autoencoders. In ICLR, 2017.

Deep Learning 2 @ UvA Advanced discrete LVMs 35 / 36

https://www.aclweb.org/anthology/D18-1108
https://www.aclweb.org/anthology/P18-1173


Variance reduction

References VII

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha
Sohl-Dickstein. REBAR: Low-variance, unbiased gradient estimates for
discrete latent variable models. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages
2627–2636. Curran Associates, Inc., 2017.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of
representations in the transformer: A study with machine translation
and language modeling objectives. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong, China, November
2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1448. URL
https://www.aclweb.org/anthology/D19-1448.

Deep Learning 2 @ UvA Advanced discrete LVMs 36 / 36

https://www.aclweb.org/anthology/D19-1448

	Reparameterised Gradients
	Sparse Gradients
	Variance reduction
	References

